CS 331	, Fall 2025	Today:	- Scheduling
	5 (910)		- Longest incredship
Manie) (110)		Subsequence
			_ Sulget Sum
Scheduly	ny (Part III	-, Section 3.	
[Nort:	Lis n tuple	es in R ²	
	[lin] v		
	endpoints of	ith interval	
Out put:	•		erlapping S = Cr)
	i.e. titjem	(lin:)	1 [lini] = Ø

Not OK

OK

Q: How many can we schedule?

It is not so exy.

Naive also: "try everythins"

Problem: thee's 2" possible SE Co)...

1969, DbJ

Best (i) = largest subset taking interval i?

15 lub 1: Most outer 5 (not lated)

2: how to recurse?

10ed: 1) Sort L

2) Detve special problems Best (j)

3) ---

4) brotits.

Step 2: let	
Best(i) = brselt No	roverlapping subset) (pretix of L)
Step 1: How to sort?	· left endpoint?
Ans: he should do whatever	lets us recurse. (1) (2)
2	<u></u>
3	

(lft Sort: not a prefix Right sort: a prefix (menoized)

()2;w.	Suppose	L sorted	by right d	hdpaint.
	Remouns	ove/212	ul bit int	\cdot\
	0):vel 2	but,x of	L.	
Prof:			ln	r
			int	ersl N
wfarsi Nov-oralgabi One	rtophy intensis my		Pur	P(m)~1
(Ot	P(n) be	e last inte	nsl with	rpas < In
Over 20	gons: 70	n)+1, p(n))+2, N	しいうしかいろり
		1,2,	P(n)	ri & rpcn < Lo

1) Sort L by right endpoint

?) Défine Special Subproblems:

Best(i) = large It Noroner Lapping Subset of ((ij) (pretix of ()

3) recursion

Best (i) = Max (Best (i-i), 1+ Best (P(i)))

don't include interval 5 (Nevel)

Here, P[]) is last acceptable interest:

TPG) < L's < TPG)+1 (can take) (can't take)

Purtine analysis:	O(u o > (u))
	AIN (S
	3) O(n) X O(los(n)) H susprosums compte PCi) via sindy search
	4) O(nlog(n)) time (before, exp(n))
[Extension] Recou	er the Subset?
Best (2)	Best (Ph) Best (n)
We menoized evrything can into the path. Work backwars!	SE SU(n)

(Extension) Weighted scheduling

Sane ides, but internal i has weight W(i)

Godl: Maximizh = NCi) for non-overlapshy 5

Motoration: Not all Intervals Crested equal

e.g. W(i) = r.-L: (by lensth)

W(i) = / (U2rilla scheouling)

Statesy: Best (3) = Max weight Non-overlapping
Subset of first; intervals.

Best(j) = Max (Best(j-1), Best (P(j))+ W(i))

Longest increasing subsequence (Part III, Section 3.2)

Input: Lisalist of nelements in Pr Output: Longest in Cressing subsequence of L SE(N), L(i) < L(j) Hills ES

[Example]

5, 10, 7, 1, 8, 3, 2, 6, 12, 4, 9, 11 (ransim permutation of (12))

Again, not so easy! "try everythin" => 2" tries

Best (i) = longest increasing subsequence ending on L(i)

(profix 2/50 OK: just not 25 clen)

How to recurse? if b is small, not take Waxyzb(L(n)) Waxyzb(L(n))less options to continue growing the Sequence

take any: there are tradeoffs ...

Solution: try everything.

Best (j) = Max Best (i) + 1

i e G-17

LGT & LGD

Best continuation.

indude LCj]

We let it =0 if there are no L(i) =L(j).

Takes O(n) time per je(n), O(n2) time total.

[Normal recursion]

[Smart recursion]

Still can have large branchins factor just reusing the one in problems

Subset Sun (Part III, Section 3.3)

Input: L is a list of n natural #5

VEM is a target value

Output: True if 355(n), ZLi)=V

False else

into: height LOO MX4 these options to fill How to defre subproblems? L(is) if false, doesn't Y:eW much into loter... held to consider Uslues

S (i)[v] = (on you hit target v using that j items?

Formula:

What order?

Row by row. Formula & depends on press row.

Tine: O(nV). (good it V Small)

Bonus: Faster LIS

Solusble in O(nlosln) time.
Intuition: Can we make length-k
usins (Si)?

is there length k-1? may as well store <u>Smallest</u> end

Goal: Iteste thru je(n) After time j:

Smallest end of leight-k incressing subseq. of LCis)

· S 2/wzys sorted Doservations:

· Incoming clement unique stack - carlier? not smoller than current had - 1 ster? remove L(j), smoller than prev. herd · log(n) time per iter